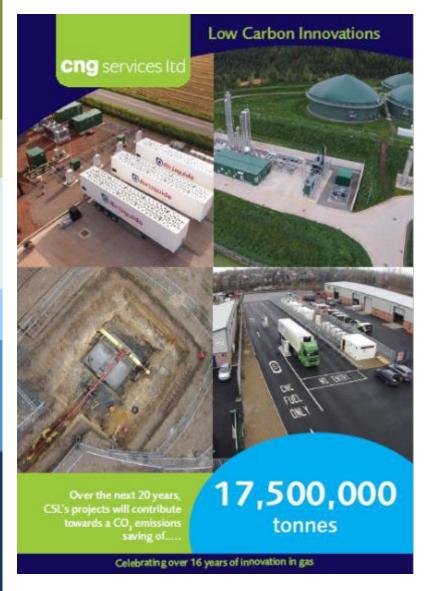


Make Biogas Happen

The Biomethane Ladder – putting forward the best use cases for biomethane an Bio-CO2


30th March 2023

John Baldwin Managing Director CNG Services Ltd

john.baldwin@cngservices.co.uk www.cngservices.co.uk 07831 241217

CNG Services Ltd

- CNG Services Limited (CSL) provides consultancy, design and build services to the biomethane industry, all focused on reducing Greenhouse Gas (GHG) emissions
- In the past 10 years our efforts have produced a material impact with an estimated 20 year project life reduction in CO₂ emissions of 17,500,000 tonnes through:
 - Biomethane injection into the gas grid
 - Running trucks on Bio-CNG
 - Acting as developer and design and build contractor for the Highlands CNG Project
- Working on a number of Biomethane, H₂ and CCUS innovation projects including:
 - Biomethane from manure with CCS
 - Biomethane direct into the NTS
 - Green H2 into the NTS and Hydrogen Business Model Projects
 - Reverse Compression to Create Capacity for Biomethane Injection
- CSL is an ISO 9001, 14001 and 45001 approved company and has also achieved Achilles certification. CSL is GIRS
 accredited for design and project management and has been certified as a competent design organisation for
 high pressure UK onshore natural gas works by DNVGL

Before we get to the 2 ladders, a few suggestions as to what best practice might involve by 2030

1. Direct solar/wind/batteries to provide electricity for Biomethane Projects

- A typical AD is a semi-industrial site something between a farm and a factory
- It can be used to become a hub for multi-renewables with direct wire solar, wind (now its back) and batteries
- Being a source of 'electricity demand' is valuable
 - Heat Pumps for heating the digesters, liquid Bio-CO2 and Bio-CNG plants provide additional sources of electricity demand
- By 2030 ish, most ADs can be expected to have local solar, batteries and wind to secure 50% of their electricity from their own renewables, balance from the grid
- As batteries and solar fall in price the 50% can become 60% etc
- In addition, curtailed electricity from wind/solar will be available to bought at zero price (at times) and stored or used to make Green H2 (see next slide)

Onshore wind rules to be relaxed after Tory revolt

() thour age

The government has pledged to relax restrictions on building onshore wind farms in England after a threatened rebellion from Conservative MPs.

2.AD sites are ideal places to make Green H2 – land, electricity grid connection, on site solar/wind/batteries

- No more staff required and probably no planning issues. AD sites are all connected to the electricity grid
- Green H2 may be able to react with Bio-CO2 to make more renewable methane or it may have local uses for industry or transport
- The point is that all the ingredients to make Green H2 will be on site (including rainwater from the digester roof)

Item	New Biomethane	Hydrogen	Comments
Key Plant	AD + Upgrader + GEU + compressors	Electrolyser + 30 bar H2 Storage vessels	Bought in from expert suppliers
Site works	Civils, electricity and gas grid connections, welded pipework	Civils, electricity grid (and maybe gas grid) connections, welded pipework	Similar skills
Feedstock	Agricultural/food industry waste with some crop (which is solar with integrated storage)	Solar/wind with batteries to improve load factor & electricity grid to bring renewable electricity	Zero carbon or GHG negative
Safety/Regulation	HSC/COMAH/DSEAR/PSR	HSC/COMAH/DSEAR/PSR	Same
Energy Product	Renewable CH4 and Bio-CO2 Compressed or liquid	Renewable H2 Compressed or liquid	Similar gases Inject into gas grid, use locally or move my road (compressed/liquid)
Nature of the gas	Heavy, relatively hard to ignite	Light, leaky, quick to dispense	There are important differences
Use as Truck Fuel	Compressed or Liquid, local or remote via Grid or via truck deliveries	Compressed or Liquid, local or via truck deliveries (once trucks exist)	Use of gas grid for biomethane is main difference
Route to market for the Energy Product	Inject into the gas grid, use on site for trucks or take off site in 300 bar compressed biomethane trailers	Direct to I&C customer, use on site for trucks, inject into gas grid or take off site in 350 bar H2 trailers	Similar trailers for Bio-CNG and H2 made by same companies
Long term financial case	Cost to emit 1 tonne of CO2	Cost to emit 1 tonne of CO2	Similar
Security of supply impact	Every 1 kWh of biomethane saves 1 kWh of natural gas imports to Europe	Every 1 kWh of H2 saves 1 kWh of natural gas imports to Europe	Similar

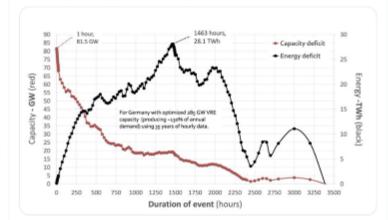
3. For the Dunkelflaute, we will need to turn on gas engines for <5% load factor. AD sites are ideal places for them as they will (mostly) be on the gas grid

Dunkelflaute 'dark doldrums' or 'dark wind lull' is a term used to describe a period of time in which little to no energy can be generated with the use of wind and solar power

For UK post 2035 here are 2 main options for Dunkelflaute periods

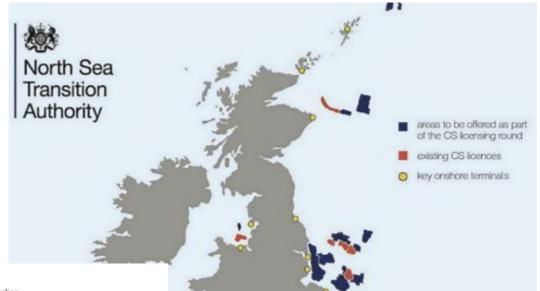
1. Use of H2

- Blue/Green H2 production plant
- H2 storage (salt cavities)
- H2 pipelines
- H2 generation plant


2. Fossil Gas with CCUS

- Fossil gas generation plant
- Waste CO2 captured and sent to CCUS facilities eg HyNet/Teesside/Humber/Northern Lights
- But prior to 2035 its likely that the fall back option is unabated gas engines that can include ones on AD sites
- The Load Factor of all back up options H2, gas with CCUS and gas engines will be <5% and falling by 2035
- The H2 and CCUS options will be very expensive on a cost per tonne of CO2 basis because of such a low load factor

There may be 10 years of <5 day a year Dunkelflaute and then a year with a longer one like below....tricky


[4] Media discussions & many studies on "Dunkelflaute" typically focus on events from a few days up to 2 weeks of *continuous* low VRE output. Our analysis shows that the period determining storage reqs. is FAR longer - for Germany its approx. **61 days** (9 weeks)!

4. Bio-CO2 is Valuable

- o In the period 2014 19 the producers of liquid Bio-CO2 generally earned around £50/tonne, today it is more like £150/tonne given the end of fertilizer manufacture in UK
- We are not involved in new biomethane projects that aren't capturing and selling Liquid Bio-CO2. Why would you vent something so valuable when the UK Govt is funding Direct Air Capture based on 420 ppm CO2? Indicative numbers below
- Every biomethane project has 2 components − 1) a carbon neutral cycle of biogenic Bio-CO2 from grass to cow to milk to air to grass plus 2) By capturing the Bio-CO2 in the AD and sending it to CCUS we reduce the amount of dinosaur era CO2 in the atmosphere. We are fossil CO2 hunters
- Expected to be major CCUS announcements on 30th March 23 which supports Liquid Bio-CO2 capture from biomethane plants

Hydrogen

- 117. Hynet Hydrogen Pipeline
- 118. INOVYN Hydrogen Storage (Hynet Cluster, NW)
- 119. East Coast Cluster Hydrogen Pipeline
- 120. Aldbrough Hydrogen Storage (East Coast Cluster, Humber).
- 121. Hydrogen Electrolyser Capacity Deployment

Carbon Capture and Storage (CCUS)

- 122. Hynet Cluster CCUS duster in the North West
- 123. East Coast Cluster CCUS duster in Teesside and Humber

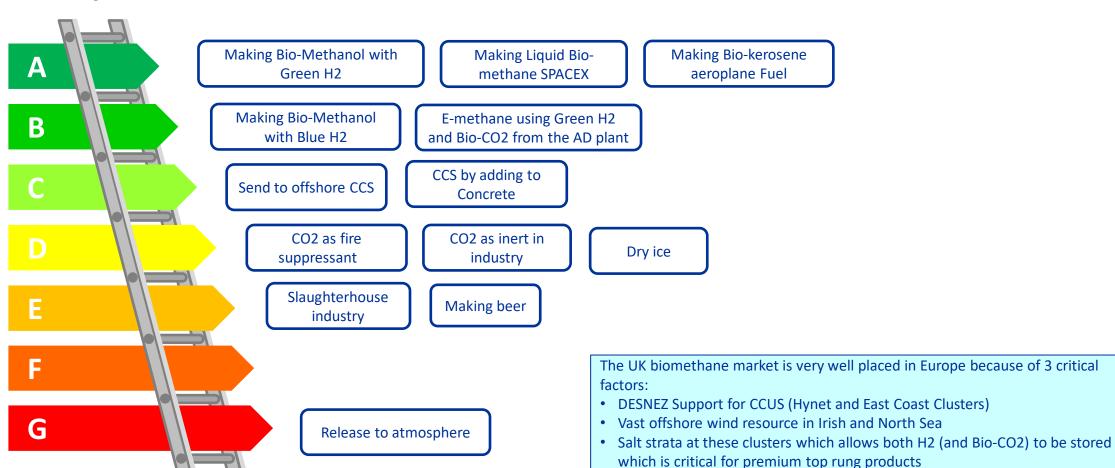
Parameter	Value	Unit
Biogas and AD Da	ata	
Biogas Composition (%CH4)	60%	
Biogas Production Rate (60% CH4, 40% CO2)	1,000	Nm3/h
Biogas Production Rate	1,055	Sm3/h
AD Operation	100%	
Upgrader availability	97%	
AD Annual Production Hours	8,760	hours
Annual Biogas Production	9,241,319	Sm3/annum
Annual Biomethane Production	50,318,065	kWh/annum
CO2 Production	1	
Description	Value	Unit
Biogas Composition	40%	CO ₂ (vol)
CO2 Capture Efficiency	90%	-
Potential CO2 Production	380	Sm³/h
CO2 Recovery Plant Availability (Relative to BUU)	97%	-
CO2 Recovery Plant Operating Hours	8,497	h/annum
Annual CO2 Production (Mass)	6,103,217	kg/annum
Annual CO2 Production	6,103	tonnes/annum
Liquid CO2 Value - sold at the AD plant (indicative)	£150	/tonne
Annual CO2 Income	£915,483	/annum

Now the Ladders

Biomethane Ladder (March 23)

Good options

And it is assumed that all the Bio-CO2 from the AD plant is captured, liquefied and used as per the Bio-CO2 ladder


Poor options

Bio-CO2 Ladder (March 23)

And it is assumed that all the Biomethane goes into the gas grid and is used as per the Biomethane Ladder

Good options

Poor options

Biomethane and Bio-CO2 Conclusions

Includes all 8 of the EU's Strategic Net Zero Technologies

- 1. Don't burn any biogas (new projects)
- 2. Don't vent any Bio-CO2, liquefy it and sell it or send to CCUS (new and existing projects) No 7
 - Bio-CO2 will be a valuable product to make bio-methanol and similar top rung things
- **3. Build direct wire** solar/wind/batteries (new and existing projects) to supply the base load electricity demand include heat pumps to heat the digesters No 1, No 2, No 3, No 4
- 4. Plan for making Green H2 for multiple uses (new and existing) No 5
- 5. Plan for Dunkelflaute back-up gas engines on the AD site (new and existing)
- 6. Don't burn any diesel run trucks and farm tractors on Bio-CNG (new and existing) No 6

One final thing, to keep the GB Biomethane industry moving forward, we must **sort capacity for biomethane projects as well as use the NTS.**

A UNC Modification is going through to allow Reverse Compression (No 8) and National Gas Transmission are supportive of further reforms to the NTS gas connection regime for new biomethane projects. By summer 2023 we should be able to say that every potential biomethane project in GB can have capacity

ANNEX

STRATEGIC NET-ZERO TECHNOLOGIES

1.	Solar photovoltaic and solar thermal technologies	
2.	Onshore wind and offshore renewable technologies	
3.	Battery/storage technologies	
4.	Heat pumps and geothermal energy technologies	
5.	Electrolysers and fuel cells	
6.	Sustainable biogas/biomethane technologies	
7.	Carbon Capture and storage (CCS) technologies	
8.	Grid technologies	

