Presented to

IP Week
by
John Baldwin of Gas Strategjes
On behalf of Ro' Bryngelson, Executive Vice President and Chief Operating Officer

Excelerate Energy

Summary

- Energy Bridge ${ }^{\text {TM }}$ Regasification Technology
- Teesside GasPort

Energy Bridge ${ }^{\text {™ }}$ Regasification Vessels Provide Natural Gas Delivery in Three Ways

Energy Bridge ${ }^{\text {TM }}$ was primarily designed to access markets unreachable by conventional means...

Energy Bridge ${ }^{\text {™ }}$ Deepwater Port

Excelerate GasPort™

Conventional
Land-Based Terminal
...however, its economics are competitive with a conventional, land-based LNG terminal - with added flexibility benefits

Energy Bridge ${ }^{\text {TM }}$ Regasification Vessels Location of the Three Discharge Points

Each EBRV can discharge cargo in three distinct ways

Deepwater Port As vaporous natural gas through an STL Buoy

GasPort
As vaporous natural gas through the High Pressure Gas Manifold

Conventional As LNG through standard liquid loading arms

Energy Bridge ${ }^{\text {TM }}$ Technology Makes GasPort Possible

Allows delivery of regasified LNG directly into a gas pipeline installed on the jetty

EBRVs come with a high pressure gas manifold as standard equipment

Teesside GasPort

World's 1st Dockside Regasified LNG

 Receiving Facility

- Second operational LNG receiving facility in the UK
- Site selection to in-service date in 12 months
- Low capital cost, high flexibility asset for LNG imports

Development Timeline Chronology of Teesside GasPort

July 2005 • Global price differentials for upcoming winters reveal a market opportunity

- Excelerate teams with Gas Strategies to identify best sites in UK for GasPort

December 2005 - Teesport identified as an ideal location discussion on possible locations ensues

February 2006 - Agreement reached with PD Teesport to locate on a disused crude jetty - the Excelerate Jetty is born

- MouchelParkman engaged to commence design work - planning applications filed
June 2006 • EPIC contract executed with Murphy Pipelines Ltd. - construction commences
August 2006
- Planning permissions received investment to date over $£ 10$ million
- Detailed risk assessments performed with close regulatory coordination
- px Holdings Ltd. selected as facility operator

February 2007 • First cargo arrival and discharge!

Teesside GasPort Project Layout

GasPort Design Basis Component Summary

Teesside GasPort Key Project Challenges

- Looking back, it probably should not have been possible to go from this

to this

in 5 months
- But now we have, it will be much easier next time round....
- Challenges for winter 06/07 operation:
- Environmental - completion of 2 km of 100 bar pipeline next to SSSI by 1 November
- Safety - consent of UK HSE and Port Authority
- Planning - permission for onshore facilities received in 12 weeks
- Pipeline crossings:
- Ekofisk oil line (1 million b/d)
- CATS pipeline (1500 mscfd)
- Teesside Power Pipeline (1,900 MW CCGT)
- HDD under the Tees (1 km)
- Px tie-in
- Completed in July
- NTS connection
- Normally takes 2.5 years
- Jetty refurbishment
- Design and build
- Unloading arm - first of its type
- Design of onshore facilities
- Procurement of pipe, valves and other material
- Construction started on 1 September 06, completed Jan 07

GasPort Offloading Arm Brings It All Ashore

- High-pressure gas arm capable of accommodating full flows of up to 600 million cubic feet per day (17 mcmd)
- Designed to accommodate a wide range of motions while Energy Bridge Regasification Vessels are moored at the jetty
- Quick connect / quick disconnect coupling allows for rapid separation in an emergency

GasPort AGI

Blending, Measurement, and Control

- Nitrogen blending facilities are incorporated into the Teesside GasPort design
- Reliable supply of nitrogen is available from the nearby BOC Ltd. nitrogen plant
- Virtually any LNG specification can be stabilized to meet National Transmission System (NTS) specifications
- Gas chromatography and fiscal metering provide accurate measurement of flows and gas composition
- Pressure control systems are in place to ensure proper entry into the NTS

STS Transfer at Scapa Flow From Conventional Vessel to EBRV

Teesside GasPort

Pulling It All Together Dockside

The Port

The Jetty

The Onshore Facilities

Excelerate Energy's Regasification Solutions Portfolio

- Gulf Gateway deepwater port
- Commissioned March 2005
- 500 mmcf/d baseload
- 690 mmcf/d peak

- Teesside GasPort™
- In-service February 2007
- 400 mmcf/d baseload
- 600 mmcf/d peak

- Northeast Gateway deepwater port
- In-service December 2007
- 400 mmcf/d baseload
- 600+ mmcf/d peak

Excelerate Energy
 Bringing Continents of Energy Together

Excelerate Energy's Project Team

MURFHY

Watson, Farley \& Williams
mouchelparkman

Speaker

John Baldwin
Senior Consultant
J.baldwin@gas-strateges.com

07831241217

